This article analyzes the water implications in 92 developing countries of first attaining the 2015 hunger target of the United Nations Millennium Development Goals and then feeding a growing population on an acceptable standard diet. The water requirements in terms of vapor flows are quantified, potential water sources are identified, and impacts on agricultural land expansion and water tradeoffs with ecosystems are analyzed. This article quantifies the relative contribution from infiltrated rainwater/green water in rain-fed agriculture, and liquid water/blue water from irrigation, and how far water productivity (WP) gains can go in reducing the pressure on freshwater resources. Under current WP levels, another 2,200 km(3).yr(-1) of vapor flow is deemed necessary to halve hunger by 2015 and 5,200 km(3).yr(-1) in 2050 to alleviate hunger. A nonlinear relationship between vapor flow and yield growth, particularly in low-yielding savanna agro-ecosystems, indicates a high potential for WP increase. Such WP gains may reduce additional water needs in agriculture, with 16% in 2015 and 45% by 2050. Despite an optimistic outlook on irrigation development, most of the additional water will originate from rain-fed production. Yield growth, increasing consumptive use on existing rain-fed cropland, and fodder from grazing lands may reduce the additional rain-fed water use further by 43-47% until 2030. To meet remaining water needs, a cropland expansion of approximately 0.8% yr(-1), i.e., a similar rate as over the past 50 years (approximately 0.65% yr(-1)), seems unavoidable if food production is to occur in proximity to local markets.