A time-resolved time-of-flight mass spectrometer (TOF-MS) that can simultaneously monitor multiple species on the millisecond time scale has been constructed. A pulsed photolysis laser is used to initiate reaction, and then via a pinhole the reaction mixture is sampled by the TOF-MS. The ions are created by photoionization via either a discharge lamp or a pulsed laser. Comparison between the two ionization sources showed that the laser is at least an order of magnitude more efficient, based on the time to accumulate the data. Also, unlike the continuous lamp the pulsed laser is not mass limited. Frequency tripling the 355 nm output of a Nd:YAG laser provided a convenient laser ionization source. However, using a dye laser provided an equally intense laser ionization source with the ability to tune the vacuum ultraviolet (vuv) light. To show the versatility of the system the kinetics of the reaction of SO and ClSO radicals with NO(2) were simultaneously measured, and using the dye laser the vuv light was tuned to 114 nm in order to observe H(2)CO being formed from the reaction between CH(3)CO and O(2).