Electron transport processes were investigated in barley leaves in which the oxygen-evolution was fully inhibited by a heat pulse (48 degrees C, 40 s). Under these circumstances, the K peak (approximately F(400 micros)) appears in the chl a fluorescence (OJIP) transient reflecting partial Q(A) reduction, which is due to a stable charge separation resulting from the donation of one electron by tyrozine Z. Following the K peak additional fluorescence increase (indicating Q(A)(-) accumulation) occurs in the 0.2-2 s time range. Using simultaneous chl a fluorescence and 820 nm transmission measurements it is demonstrated that this Q(A)(-) accumulation is due to naturally occurring alternative electron sources that donate electrons to the donor side of photosystem II. Chl a fluorescence data obtained with 5-ms light pulses (double flashes spaced 2.3-500 ms apart, and trains of several hundred flashes spaced by 100 or 200 ms) show that the electron donation occurs from a large pool with t(1/2) approximately 30 ms. This alternative electron donor is most probably ascorbate.