ITK (IL-2-inducible T cell kinase), a Tec family protein tyrosine kinase (PTK), is one of three PTKs required for T cell antigen receptor (TCR)-induced activation of phospholipase C-gamma1 (PLC-gamma1). Like Src and Abl family PTKs, ITK adopts an inactive, "closed" conformation, and its conversion to the active conformation is not well understood, nor have its direct substrates been identified. In a side-by-side comparison of ITK and ZAP-70 (zeta chain-associated protein kinase of 70 kDa), ITK efficiently phosphorylated Y(783) and Y(775) of PLC-gamma1, two phosphorylation sites that are critical for its activation, whereas ZAP-70 did not. SLP-76 (SH2-domain-containing leukocyte protein of 76 kDa), an adaptor required for TCR-induced activation of PLC-gamma1, was required for the phosphorylation of both PLC-gamma1 sites in intact cells. Furthermore, this event depended on the N-terminal tyrosines of SLP-76. Likewise, SLP-76, particularly its N-terminal tyrosines, was required for TCR-induced tyrosine phosphorylation and activation of ITK but was not required for the phosphorylation or activation of ZAP-70. Both ZAP-70 and ITK phosphorylated SLP-76 in vitro; thus, both PTKs are potential regulators of SLP-76, but only ITK is regulated by SLP-76. Upon TCR stimulation, a small fraction of ITK bound to SLP-76. This fraction, however, encompassed most of the catalytically active ITK. Catalytic activity was lost upon mild elution of ITK from the SLP-76-nucleated complex but was restored upon reconstitution of the complex. We propose that SLP-76 is required for ITK activation; furthermore, an ongoing physical interaction between SLP-76 and ITK is required to maintain ITK in an active conformation.