Acetylene sorption of microporous metal formates M(HCOO)2 (M = Mg and Mn) was investigated. Measurements of acetylene sorption at 196, 275, and 298 K showed a Type I isotherm with quick saturation at low pressures, and 50-75 cm3 g(-1) uptake at 1.0 atm. The single-crystal X-ray structure analysis of the acetylene-adsorbed metal formates revealed that acetylene molecules occupy two independent positions in the zigzag channels of the frameworks with a stoichiometry of M(HCOO)2 x 1/3C2H2, which is consistent with the gas sorption experiments. No specific interaction except van der Waals interactions between the adsorbed acetylene molecules and the walls of the frameworks was found. Sorption properties of other gases, including CO2, CH4, N2, O2, and H2, were also investigated. When the temperature was increased to 298 K, the amount of adsorbed acetylene was still above 60 cm3 g(-1) for Mg(HCOO)2 and 50 cm3 g(-1) for Mn(HCOO)2, whereas the uptake of other gases decreased substantially. The microporous metal formates may thus be useful not only for the storage of acetylene but also its separation from other gases at room or slightly higher temperatures.