After ATP binding the myosin head undergoes a large structural rearrangement called the recovery stroke. This transition brings catalytic residues into place to enable ATP hydrolysis, and at the same time it causes a swing of the myosin lever arm into a primed state, which is a prerequisite for the power stroke. By introducing point mutations into a subdomain interface at the base of the myosin lever arm at positions Lys(84) and Arg(704), we caused modulatory changes in the equilibrium constant of the recovery stroke, which we could accurately resolve using the fluorescence signal of single tryptophan Dictyostelium myosin II constructs. Our results shed light on a novel role of the recovery stroke: fine-tuning of this reversible equilibrium influences the functional properties of myosin through controlling the effective rates of ATP hydrolysis and phosphate release.