The endoplasmic reticulum (ER) is a major site of protein synthesis in eukaryotes. Newly synthesized proteins are monitored by a process of quality control, which removes misfolded or unassembled polypeptides from the ER for degradation by the proteasome. This requires the retrotranslocation of the misfolded proteins from the ER lumen into the cytosol via a pathway that, for some substrates, involves members of the recently discovered Derlin family. The Derlin-1 isoform is present as a dimer in the ER, and we now show that its dimerization is modulated by ER stress. Three distinct types of chemically-induced ER stress substantially reduce the levels of Derlin-1 dimer as assayed by both cross-linking and co-immunoprecipitation. The potential function of the different Derlin-1 populations with respect to ER quality control is investigated by analysing their capacity to associate with a misfolded membrane protein fragment. We show for the first time that Derlin-1 can associate with an aberrant membrane protein fragment in the absence of the viral component US11, and conclude that it is the monomeric form of Derlin-1 that interacts with this potential ER-associated degradation substrate. On the basis of these data we propose a model where the pool of active Derlin-1 in the ER membrane can be modulated in response to ER stress.