Organometallic polymers assembled from cation-pi interactions: use of ferrocene as a ditopic linker within the homologous series [{(Me3Si)2NM}2.(Cp2Fe)]infinity (M=Na, K, Rb, Cs; Cp=cyclopentadienyl)

Chemistry. 2007;13(16):4418-32. doi: 10.1002/chem.200700219.

Abstract

Addition of ferrocene to solutions of alkali metal hexamethyldisilazides M(HMDS) in arenes (in which M=Na, K, Rb, Cs) allows the subsequent crystallization of the homologous series of compounds [{(Me(3)Si)(2)NM}(2) (Cp(2)Fe)](infinity) (1-4). Similar reactions using LiHMDS led to the recrystallization of the starting materials. The crystal structures of 1-4 reveal the formation of one-dimensional chains composed of dimeric [{M(HMDS)}(2)] aggregates, which are bridged through neutral ferrocene molecules by eta(5)-cation-pi interactions. In addition, compounds 3 and 4 also contain interchain agostic M--C interactions, producing two-dimensional 4(4)-nets. Whereas 1 and 2 were prepared from toluene, the syntheses of 3 and 4 required the use of tert-butylbenzene as the reaction media. The attempted crystallization of 3 and 4 from toluene resulted in formation of the mixed toluene/ferrocene solvated complexes [{(Me(3)Si)(2)NM)(2)}(2) (Cp(2)Fe)(x)(Tol)(y)](infinity) (in which M=Rb, x=0.6, y=0.8, 5; M=Cs, x=0.5, y=1, 6). The extended solid-state structures of 5 and 6 are closely related to the 4(4)-sheets 3 and 4, but are now assembled from a combination of cation-pi, agostic, and pi-pi interactions. The charge-separated complex [K{(C(6)H(6))(2)Cr}(1.5)(Mes)][Mg(HMDS)(3)] (15) was also structurally characterized and found to adopt an anionic two-dimensional 6(3)-network through doubly eta(3)-coordinated bis(benzene)chromium molecules. DFT calculations at the B3 LYP/6-31G* level of theory indicate that the binding energies of both ferrocene and toluene to the M(HMDS) dimers increases in the sequence Li<Na<K. This pattern is a consequence of the larger metals allowing more open coordination spheres to support cation-pi contacts. By comparison, binding of the isolated metal cations to the aromatic groups follow the reverse order K<Na<Li. A combined analysis of theoretical and experimental data suggest that ferrocene is a stronger cation-pi donor than toluene for the lighter metals, but that this difference is eliminated on descending the group.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cations / chemistry
  • Computer Simulation
  • Crystallography, X-Ray
  • Cyclopentanes / chemistry*
  • Ferrous Compounds / chemistry*
  • Metallocenes
  • Metals, Alkali / chemistry*
  • Models, Chemical
  • Models, Molecular
  • Molecular Structure
  • Organometallic Compounds / chemical synthesis
  • Organometallic Compounds / chemistry*
  • Polymers / chemical synthesis
  • Polymers / chemistry*
  • Sensitivity and Specificity
  • Spectrophotometry, Infrared / methods
  • Stereoisomerism

Substances

  • Cations
  • Cyclopentanes
  • Ferrous Compounds
  • Metallocenes
  • Metals, Alkali
  • Organometallic Compounds
  • Polymers
  • ferrocene