Dependence of reaction center-type energy-dependent quenching on photosystem II antenna size

Biochim Biophys Acta. 2007 Jun;1767(6):773-80. doi: 10.1016/j.bbabio.2007.02.021. Epub 2007 Mar 12.

Abstract

The effects of photosystem II antenna size on reaction center-type energy-dependent quenching (qE) were examined in rice plants grown under two different light intensities using both wild type and qE-less (OsPsbS knockout) mutant plants. Reaction center-type qE was detected by measuring non-photochemical quenching at 50 micromol photons m(-2) s(-1) white light intensity. We observed that in low light-grown rice plants, reaction center-type qE was higher than in high light-grown plants, and the amount of reaction center-type qE did not depend on zeaxanthin accumulation. This was confirmed in Arabidopsis npq1-2 mutant plants that lack zeaxanthin due to a mutation in the violaxanthin de-epoxidase enzyme. Although the electron transport rate measured at a light intensity of 50 micromol photons m(-2) s(-1) was the same in high light- and low light-grown wild type and mutant plants lacking PsbS protein, the generation of energy-dependent quenching was completely impaired only in mutant plants. Analyses of the pigment content, Lhcb proteins and D1 protein of PSII showed that the antenna size was larger in low light-grown plants, and this correlated with the amount of reaction center-type qE. Our results mark the first time that the reaction center-type qE has been shown to depend on photosystem II antenna size and, although it depends on the existence of PsbS protein, the extent of reaction center-type qE does not correlate with the transcript levels of PsbS protein. The presence of reaction center-type energy-dependent quenching, in addition to antenna-type quenching, in higher plants for dissipation of excess light energy demonstrates the complexity and flexibility of the photosynthetic apparatus of higher plants to respond to different environmental conditions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis / metabolism
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism
  • Carotenoids / analysis
  • Carotenoids / metabolism
  • Electron Transport
  • Mutation
  • Oryza / genetics
  • Oryza / metabolism
  • Photosynthetic Reaction Center Complex Proteins / genetics
  • Photosynthetic Reaction Center Complex Proteins / metabolism*
  • Photosynthetic Reaction Center Complex Proteins / radiation effects
  • Photosystem II Protein Complex / genetics
  • Photosystem II Protein Complex / metabolism*
  • Photosystem II Protein Complex / radiation effects
  • Spectrometry, Fluorescence
  • Xanthophylls / metabolism
  • Zeaxanthins

Substances

  • Arabidopsis Proteins
  • Photosynthetic Reaction Center Complex Proteins
  • Photosystem II Protein Complex
  • Xanthophylls
  • Zeaxanthins
  • Carotenoids