There are numerous similarities between aging/senescence and differentiation. One key similarity is that in both biological processes chromatin remodeling events occur. It is now known that during both processes there is a reorganization of eu- and heterochromatic domains and an increase in heterochromatin, known as heterochromatinization. Previous work of more than two decades has shown that the replacement H1 linker histone subtype, H1.0, accumulates during terminal differentiation in numerous cell/tissue systems. However, work with this differentiation-associated H1 subtype in aging cell systems has only recently been accomplished. In this article, we outline the cumulative results from our investigations of H1.0 protein and mRNA levels in the in vitro aging cell system of human diploid fibroblasts (HDFs) and discuss the potential rationale of why this particular subtype was found to accumulate during both these processes.