Cancer is a disease that results from both genetic and epigenetic changes. Discordant phenotypes and varying incidences of complex diseases such as cancer in monozygotic twins as well as genetically identical laboratory animals have long been attributed to differences in environmental exposures. Accumulating evidence indicates, however, that disparities in gene expression resulting from variable modifications in DNA methylation and chromatin structure in response to the environment also play a role in differential susceptibility to disease. Despite a growing consensus on the importance of epigenetics in the etiology of chronic human diseases, the genes most prone to epigenetic dysregulation are incompletely defined. Moreover, neither the environmental agents most strongly affecting the epigenome nor the critical windows of vulnerability to environmentally induced epigenetic alterations are adequately characterized. These major deficits in knowledge markedly impair our ability to understand fully the etiology of cancer and the importance of the epigenome in diagnosing and preventing this devastating disease.