Introduction: Creatine kinase, found in osteoblasts, is an enzyme that is upregulated in response to interventions that enhance bone mass accretion. Creatine monohydrate supplementation can increase fat-free mass in young healthy men and women and can reduce markers of bone breakdown in boys with Duchenne muscular dystrophy.
Purpose: The objective of this study was to determine the influence of supplementation with creatine monohydrate on bone structure and function in growing rats, to establish a therapeutic model.
Materials and methods: Creatine monohydrate (2% w.w.) (CR; N = 16) or standard rat chow (CON; N = 16) was fed to Sprague-Dawley rats beginning at 5 wk of age, for 8 wk. Bone mineral density (BMD) and content (BMC) were assessed using dual-energy x-ray absorptiometry at the beginning and end of the protocol. The rats were sacrificed, and one femur was removed for the determination of mechanical properties.
Results: The CR-treated rats showed greater lumbar BMD and femoral bending load at failure compared with the CON rats (P < 0.05).
Conclusions: Together, these data suggest that creatine monohydrate potentially has a beneficial influence on bone function and structure; further investigation is warranted into its effect on bone functional properties and its effects in disorders associated with bone loss.