Metallothioneins are low molecular weight polypeptides, present in most eukaryotic phyla, with role in metal homeostasis and detoxification. We previously reported the identification and the characterization of a metallothionein gene (GmarMT1) from the arbuscular mycorrhizal fungus Gigaspora margarita. Here, we have used real-time quantitative RT-PCR to show that GmarMT1 expression was turned off during the symbiotic fungal growth in the hexose-rich mycorrhizal apoplast, whereas transcripts were abundant during all other fungal growth stages, when products of lipid breakdown and the glyoxylate cycle feed carbohydrate-consuming pathways. In support of a nutritional regulation of GmarMT1 expression, we show that transcriptional activity of GmarMT1 promoter in yeast was strongly induced by glucose starvation (up to 20 times the basal level). We speculate that GmarMT1-encoded protein, with its proved metal binding ability, could regulate the homeostasis of zinc, a fundamental cofactor involved in C metabolism regulation and glucose repression.