High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice

Proc Natl Acad Sci U S A. 2007 May 8;104(19):8143-8. doi: 10.1073/pnas.0700384104. Epub 2007 May 1.

Abstract

To permit rapid optical control of brain activity, we have engineered multiple lines of transgenic mice that express the light-activated cation channel Channelrhodopsin-2 (ChR2) in subsets of neurons. Illumination of ChR2-positive neurons in brain slices produced photocurrents that generated action potentials within milliseconds and with precisely timed latencies. The number of light-evoked action potentials could be controlled by varying either the amplitude or duration of illumination. Furthermore, the frequency of light-evoked action potentials could be precisely controlled up to 30 Hz. Photostimulation also could evoke synaptic transmission between neurons, and, by scanning with a small laser light spot, we were able to map the spatial distribution of synaptic circuits connecting neurons within living cerebral cortex. We conclude that ChR2 is a genetically based photostimulation technology that permits analysis of neural circuits with high spatial and temporal resolution in transgenic mammals.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials
  • Animals
  • Cerebral Cortex / physiology*
  • Ion Channels / physiology*
  • Mice
  • Mice, Transgenic
  • Photic Stimulation*
  • Rhodopsin / physiology*
  • Synaptic Transmission / physiology*

Substances

  • Ion Channels
  • Rhodopsin