One outcome of hybrid breakdown is poor growth, which we observed as a reduction in the number of panicles per plant and in culm length in an F(2) population derived from a cross between the genetically divergent rice (Oryza sativa L.) cultivars 'Sasanishiki' (japonica) and 'Habataki' (indica). Quantitative trait locus (QTL) analysis of the two traits and two-way ANOVA of the detected QTLs suggested that the poor growth was due mainly to an epistatic interaction between genes at QTLs located on chromosomes 2 and 11. The poor growth was likely to result when a plant was homozygous for the 'Habataki' allele at the QTL on chromosome 2 and homozygous for the 'Sasanishiki' allele at the QTL on chromosome 11. The results suggest that the poor growth found in the F(2) population was due to hybrid breakdown of a set of complementary genes. To test this hypothesis and determine the precise chromosomal location of the genes causing the hybrid breakdown, we performed genetic analyses using a chromosome segment substitution line, in which a part of chromosome 2 from 'Habataki' was substituted into the genetic background of 'Sasanishiki'. The segregation patterns of poor growth in plants suggested that both of the genes underlying the hybrid breakdown were recessive. The gene on chromosome 2, designated hybrid breakdown 2 (hbd2), was mapped between simple sequence repeat markers RM3515 and RM3730. The gene on chromosome 11, hbd3, was mapped between RM5824 and RM1341.