Performance evaluation of accurate mass measurement by the LTQ/Orbitrap, at a resolving power of 60,000 and in external calibration mode, indicated that the Orbitrap is capable of providing high mass accuracy of <2 ppm for over 24 h post-calibration. This, together with limited trade-off between sensitivity and resolving power plus a wide dynamic range for mass accuracy, suggested that the LTQ/Orbitrap is an ideal analytical tool for structural elucidation of metabolites. The application of the LTQ/Orbitrap to identification of human liver microsomal metabolites of carvedilol was evaluated, using parent mass list triggered data-dependent multiple-stage accurate mass analysis, at a resolving power of 60,000 in external calibration mode. A metabolite identification workflow was developed to utilize chemical formulas from high-resolution accurate mass measurements to confirm structures of product ions of a drug proposed by Mass Frontier, illustrated by identification of structures used to establish lineage of product ions of carvedilol, which later served as a template for identification of its metabolites. A total of 58 in vitro metabolites of carvedilol were detected using 5-ppm mass tolerance filters for theoretical m/z of protonated molecules of predicted metabolites in addition to product ions and neutral mass losses diagnostic of carvedilol. The chemical formulas with unsaturation numbers calculated from the accurate m/z of precursor and product ions can be used to assign, with a high degree of confidence, the structures of metabolites and the sites of metabolism. The mass accuracies obtained for all full scan MS and MSn spectra were <2 ppm. The majority of the metabolites identified agreed with those previously reported except for those that have not been reported before. For example, several glutathione conjugates of carvedilol were reported for the first time, which may explain the reported hepatotoxicity during clinical trials and recent clinical use.
Copyright (c) 2007 John Wiley & Sons, Ltd.