Human cardiovascular dose-response to supplemental oxygen

Acta Physiol (Oxf). 2007 Sep;191(1):15-24. doi: 10.1111/j.1748-1716.2007.01710.x. Epub 2007 May 17.

Abstract

Aim: The aim of the study was to examine the central and peripheral cardiovascular adaptation and its coupling during increasing levels of hyperoxaemia. We hypothesized a dose-related effect of hyperoxaemia on left ventricular performance and the vascular properties of the arterial tree.

Methods: Oscillometrically calibrated arterial subclavian pulse trace data were combined with echocardiographic recordings to obtain non-invasive estimates of left ventricular volumes, aortic root pressure and flow data. For complementary vascular parameters and control purposes whole-body impedance cardiography was applied. In nine (seven males) supine, resting healthy volunteers, aged 23-48 years, data was collected after 15 min of air breathing and at increasing transcutaneous oxygen tensions (20, 40 and 60 kPa), accomplished by a two group, random order and blinded hyperoxemic protocol.

Results: Left ventricular stroke volume [86 +/- 13 to 75 +/- 9 mL (mean +/- SD)] and end-diastolic area (19.3 +/- 4.4 to 16.8 +/- 4.3 cm(2)) declined (P < 0.05), and showed a linear, negative dose-response relationship to increasing arterial oxygen levels in a regression model. Peripheral resistance and characteristic impedance increased in a similar manner. Heart rate, left ventricular fractional area change, end-systolic area, mean arterial pressure, arterial compliance or carbon dioxide levels did not change.

Conclusion: There is a linear dose-response relationship between arterial oxygen and cardiovascular parameters when the systemic oxygen tension increases above normal. A direct effect of supplemental oxygen on the vessels may therefore not be excluded. Proximal aortic and peripheral resistance increases from hyperoxaemia, but a decrease of venous return implies extra cardiac blood-pooling and compensatory relaxation of the capacitance vessels.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Blood Pressure
  • Cardiac Output
  • Cardiography, Impedance / methods
  • Cardiovascular System / physiopathology*
  • Dose-Response Relationship, Drug
  • Double-Blind Method
  • Echocardiography, Doppler
  • Female
  • Heart Rate
  • Humans
  • Hyperoxia / physiopathology*
  • Male
  • Middle Aged
  • Oxygen / administration & dosage
  • Regression Analysis
  • Stroke Volume
  • Subclavian Artery
  • Vascular Resistance
  • Ventricular Function, Left

Substances

  • Oxygen