13CO2 as a universal metabolic tracer in isotopologue perturbation experiments

Phytochemistry. 2007 Aug-Sep;68(16-18):2273-89. doi: 10.1016/j.phytochem.2007.03.034. Epub 2007 May 15.

Abstract

A tobacco plant was illuminated for 5h in an atmosphere containing (13)CO(2) and then maintained for 10 days under standard greenhouse conditions. Nicotine, glucose, and amino acids from proteins were isolated chromatographically. Isotopologue abundances of isolated metabolites were determined quantitatively by NMR spectroscopy and mass spectrometry. The observed non-stochastic isotopologue patterns indicate (i) formation of multiply labeled photosynthetic carbohydrates during the (13)CO(2) pulse phase followed by (ii) partial catabolism of the primary photosynthetic products, and (iii) recombination of the (13)C-labeled fragments with unlabeled intermediary metabolites during the chase period. The detected and simulated isotopologue profiles of glucose and amino acids reflect carbon partitioning that is dominated by the Calvin cycle and glycolysis/glucogenesis. Retrobiosynthetic analysis of the nicotine pattern is in line with its known formation from nicotinic acid and putrescine via aspartate, glyceraldehyde phosphate and alpha-ketoglutarate as basic building blocks. The study demonstrates that pulse/chase labeling with (13)CO(2) as precursor is a powerful tool for the analysis of quantitative aspects of plant metabolism in completely unperturbed whole plants.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acids / chemistry
  • Amino Acids / isolation & purification
  • Amino Acids / metabolism
  • Carbon Dioxide / chemistry
  • Carbon Dioxide / metabolism*
  • Carbon Isotopes
  • Computer Simulation
  • Glucose / chemistry
  • Glucose / isolation & purification
  • Glucose / metabolism
  • Mass Spectrometry
  • Nicotiana / chemistry
  • Nicotiana / metabolism*
  • Nicotine / chemistry
  • Nicotine / isolation & purification
  • Nicotine / metabolism
  • Nuclear Magnetic Resonance, Biomolecular
  • Photosynthesis
  • Plant Leaves / chemistry
  • Plant Leaves / metabolism

Substances

  • Amino Acids
  • Carbon Isotopes
  • Carbon Dioxide
  • Nicotine
  • Glucose