Purpose: The aim of the study was to assess the diagnostic accuracy of imaging myocardial infarction with a single-shot inversion recovery turbofast low-angle shot (SS IR turboFLASH) sequence at 3.0 Tesla in comparison with an established segmented inversion recovery turboFLASH sequence at 1.5 Tesla.
Materials and methods: Fifteen patients with myocardial infarction were examined at a 1.5 Tesla magnetic resonance (MR) System (Avanto, Siemens, Medical Solutions) and at a 3.0 Tesla MR system (TIM Trio, Siemens, Medical Solutions). Imaging delayed enhancement was started 15 minutes after application of contrast material. A SS IR turboFLASH was performed at 3.0 Tesla and compared with a segmented IR turboFLASH sequence at 1.5 and at 3.0 Tesla. The IR turboFLASH sequence at 1.5 Tesla served as reference method. Infarct volumes, contrast/noise ratio (CNR) of infarcted and normal myocardium were compared with the reference method.
Results: The Single-Shot IR turboFLASH technique allows imaging 9 slices during a single breath-hold. The CNR between infarction and normal myocardium of the reference method was 6.4 at 1.5 Tesla. The mean value of CNR of the IR turboFLASH sequence was 7.3 at 3.0 Tesla for the single-shot technique and 14.1 at 3.0 Tesla for the segmented technique. No significant difference was found for the CNR values of the reference technique at 1.5 Tesla and the single-shot technique at 3.0 Tesla, however for the comparison of the segmented technique at 1.5 and at 3 Tesla (P = 0.0001). The correlation coefficients of the infarct volumes, determined with the Single-Shot IR turboFLASH and the segmented IR turboFLASH technique at 3.0 compared with the reference method, were r = 0.95 (P < 0.0001) and r = 0.95 (P < 0.0001).
Conclusion: The loss of CNR, which is caused by replacement of the segmented technique by the single-shot technique, is completely compensated by the approximately 2-fold CNR increase at the higher field strength. The IR turboFLASH technique at 3.0 Tesla IR can be used as a single-shot technique with acquisition of 9 slices during a single breath-hold without loss of diagnostic accuracy compared with the segmented technique at 1.5 Tesla.