Immunohistochemical localization of retinal serotonin cells in the lamprey (Lampetra fluviatilis)

Vis Neurosci. 1991 Sep;7(3):171-7. doi: 10.1017/s0952523800004004.

Abstract

Light-microscopic immunocytochemistry was used to study serotonin (5HT)-containing retinal cells in the lamprey (Lampetra fluviatilis). Observations of sections and flatmounted retinas enabled us to distinguish four principal types of 5HT-immunoreactive neurons, on the basis of the localization of their somata and the arrangement of their processes in the inner plexiform layer, (IPL). Type 1 cell bodies (9 micron mean diameter) were numerous and were found in the innermost row of the inner nuclear layer (INL). They sent their processes into a dense plexus in sublamina a of the IPL. Type 2 cell bodies (12 micron mean diameter) were observed near the inner limiting membrane, their processes forming a plexus in sublamina b of the IPL. Most of the type 3 cells were bistratified, their cell bodies (similar in dimension to type 1) were located in the INL and their dendrites projected to both plexuses. Type 4 cell bodies (15 micron mean diameter) were observed in the middle of the IPL and could be compared with the interstitial described elsewhere. Their processes probably ended in the 5HT plexus of sublamina b but because of their sinuous course in the IPL, we could not affirm this fact. Most of 5HT immunoreactive cells were thought to be amacrine cells, but the presence of some thin processes emerging either from the soma or the primary dendrite, principally in type 1 and 2 cells, raises the possibility that some ganglion cells could be 5HT immunoreactive. The organization of the 5HT processes into two plexuses located in sublaminae a and b of the IPL resemble the functional ON and OFF pathway seen in the other vertebrates.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Axons / metabolism
  • Dendrites / metabolism
  • Immunoenzyme Techniques
  • Lampreys
  • Retina / metabolism*
  • Serotonin / metabolism*

Substances

  • Serotonin