During evolution microorganisms have developed several immune modulating strategies. The Helicobacter pylori neutrophil-activating protein (HP-NAP) is a virulence factor that attracts and activates neutrophils, and promotes their endothelial adhesion and the production of oxygen radicals and chemokines, including CXCL8, CCL3 and CCL4. HP-NAP, a TLR2 agonist, is an immune modulator able to induce the expression of interleukin-12 (IL-12) and IL-23 by human neutrophils and monocytes. In fact, HP-NAP has the potential to shift antigen-specific T-cell responses from a predominant Th2 to a polarized Th1 cytotoxic phenotype, characterized by high levels of interferon-gamma and tumor necrosis factor-alpha production. Thus, HP-NAP is a key factor driving Th1 inflammation in H. pylori infection and may be a new tool for future therapeutic strategies aimed at redirecting Th2 into Th1 responses, for example in atopy, vaccinology and cancer immunotherapy.