We report on a study of insulin incorporation into cubic phases of mono-olein (MO), using synchrotron small-angle X-ray scattering and FT-IR spectroscopy. We studied the thermal stability and aggregation scenario of insulin as a function of protein concentration in the narrow water channels of the cubic lipid matrix and compared it with data for insulin unfolding and fibrillation in bulk water solutions. The concomitant effect of insulin entrapment on the structure and phase behavior of the lipid matrix itself was also examined. We show that the protein's unfolding behavior and stability are influenced by confinement due to geometrical limitations, and vice versa, the topological properties of the lipid matrix change as well. The addition of insulin already at concentrations as low as 0.1 wt % significantly alters the phase behavior of MO. Surprisingly, new cubic structures are induced by insulin incorporation into the lipid matrix. When insulin begins to partially unfold at higher temperatures, the structure of the new cubic phase changes and finally disappears around 60 degrees C, where the aggregation process sets in. The aggregation in cubo proceeds much faster and leads to the formation of medium-sized oligomers or clusters, while the formation of large fibrillar agglomerates, as observed for bulk insulin aggregation, is largely prohibited. Hence, the results yield valuable information about the use of cubic mesoporous lipid systems as a medium for long-term storage of insulin and aggregation-prone proteins in general. Furthermore, the results provide new insights into the effects of soft-matter confinement on protein aggregation and fibrillation, a situation usually met in natural cell environments.