The native CD34+/CD31- cell population present in the stroma-vascular fraction of human adipose tissue (hAT) displays progenitor cell properties since they exhibit adipocyte- and endothelial cell-like phenotypes under appropriate stimuli. To analyze the signals within hAT regulating their phenotypes, the influence of hAT-derived capillary endothelial cells (CECs) was studied on the chemotaxis and differentiation of the hAT-CD34+/CD31- cells. Conditioned medium from hAT-CECs led to a strong chemotaxis of the hAT-CD34+/CD31- cells that was inhibited with pretreatments with pertussis toxin, CXCR-4 antagonist, or neutralizing antibodies. Furthermore, hAT-CECs produced and secreted the CXCR-4 ligand, that is, the stromal derived factor-1 (SDF-1). Finally, hAT-CECs induced the differentiation of hAT-CD34+/CD31- cells toward an endothelial cell (EC) phenotype. Indeed, hAT-CECs and -CD34+/CD31- cell coculture stimulated in a two-dimensional system the expression of the EC CD31 marker by the hAT-progenitor cells and, in a three-dimensional approach, the formation of capillary-like structures via a SDF-1/CXCR-4 dependent pathway. Thus, the migration and differentiation of hAT progenitor cells are modulated by hAT-CEC-derived factors. SDF-1, which is secreted by hAT-derived CECs, and its receptor CXCR-4, expressed by hAT-derived progenitor cells, may promote chemotaxis and differentiation of hAT-derived progenitor cells and thus contribute to the formation of the vascular network during the development of hAT.