The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex

Neuroimage. 2007 Jul 15;36(4):1225-35. doi: 10.1016/j.neuroimage.2007.03.066. Epub 2007 Apr 19.

Abstract

To exploit the high (millisecond) temporal resolution of magnetoencephalography (MEG) and electroencephalography (EEG) for measuring neuronal dynamics within well-defined brain regions, it is important to quantitatively assess their localizing ability. Previous modeling studies and empirical data suggest that a combination of MEG and EEG signals should yield the most accurate localization, due to their complementary sensitivities. However, these two modalities have rarely been explicitly combined for source estimation in studies of recorded brain activity, and a quantitative empirical assessment of their abilities, combined and separate, is currently lacking. Here we studied early visual responses to focal Gabor patches flashed during subject fixation. MEG and EEG data were collected simultaneously and were compared with the functional MRI (fMRI) localization produced by identical stimuli in the same subjects. This allowed direct evaluation of the localization accuracy of separate and combined MEG/EEG inverse solutions. We found that the localization accuracy of the combined MEG+EEG solution was consistently better than that of either modality alone, using three different source estimation approaches. Further analysis suggests that this improved localization is due to the different properties of the two imaging modalities rather than simply due to increased total channel number. Thus, combining MEG and EEG data is important for high-resolution spatiotemporal studies of the human brain.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Brain Mapping / methods
  • Data Interpretation, Statistical*
  • Electroencephalography / methods*
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods*
  • Magnetic Resonance Imaging / methods*
  • Magnetoencephalography / methods*
  • Orientation / physiology
  • Pattern Recognition, Visual / physiology*
  • Photic Stimulation
  • Sensitivity and Specificity
  • Visual Cortex / physiology*
  • Visual Pathways / physiology