Strain AR-46, isolated and identified as Acinetobacter haemolyticus, evolutionally distant from the known hydrocarbon-degrading Acinetobacter spp., proved to have excellent long-chain n-alkane-degrading ability. This is the first detailed report on an n-alkane-utilizing strain belonging to this species. The preferred substrate is n-hexadecane, with an optimal temperature of 37 degrees C under aerobic conditions. Five complete and two partial open reading frames were sequenced and correlated with the early steps of monoterminal oxidation-initiated n-alkane mineralization. The encoded protein sequences and the arrangement of these genes displayed high similarity to those found in Acinetobacter sp. M-1, but AR-46 seemed to have only one alkane hydroxylase gene, with a completely different induction profile. Unique behaviour was also observed in n-alkane bioavailability. Substrate uptake occurred through the hydrophobic surface of n-alkane droplet-adhered cells possessing long, thick fimbriae, which were presumed to play a major role in n-alkane solubilization. A majority of the cells was in detached form, with thick, but short fimbriae. These free cells were permanently hydrophilic, unlike the cells of other Acinetobacter strains.