Spatiotemporal temperature fluctuation measurements by means of a fast swept Langmuir probe array

Rev Sci Instrum. 2007 May;78(5):053505. doi: 10.1063/1.2740785.

Abstract

Stationary Langmuir probe measurements of ion saturation current and floating potential in a plasma cannot give direct information on density and plasma potential fluctuations in the presence of temperature fluctuations. This problem can be avoided if the probe bias voltage is continuously swept faster than the fluctuation time scale, recording the current-voltage characteristic. This article reports the development of a spatiotemporal highly resolving Langmuir probe array with 15 fast swept tips, operating in the strongly magnetized, collisionless edge plasma of the Wendelstein 7-AS stellarator [Plasma Phys. Controlled Fusion 31, 1579 (1989)]. The probe tips are aligned in the poloidal direction, the tip spacing is 2 mm, and the sweeping frequency is 1.4 MHz. Current and voltage data are sampled with 50 MHz. The high bandwidth of the measurement is achieved by placing miniaturized differential amplifiers close to the probe tips in order to do an impedance transform. The surface-mounting technology and an additional inverse feedback module are utilized, allowing for an input voltage range of +/-100 V, and a common mode rejection rate of 55 dB at 4 MHz, which is sufficient to resolve the nonlinear probe characteristic. For the evaluation of the data, a fit model for stationary probes is employed and found adequate. Changes of the plasma parameters during one voltage sweep are taken into account by a linear interpolation of the fit parameters. Spatio-temporal fluctuation data gained by a fast swept Langmuir probe array, which can be relevant for the turbulent radial transport of particles and energy, are presented.

Publication types

  • Evaluation Study

MeSH terms

  • Equipment Design
  • Equipment Failure Analysis
  • Magnetics / instrumentation*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Thermography / instrumentation*
  • Thermography / methods
  • Transducers*