Objectives: To investigate the role of genes encoding regulators of G protein signaling in early therapeutic response to antipsychotic drugs and in susceptibility to drug-induced extrapyramidal symptoms. As regulators of G protein signaling and regulators of G protein signaling-like proteins play a pivotal role in dopamine receptor signaling, genetically based, functional variation could contribute to interindividual variability in therapeutic and adverse effects.
Methods: Consecutively hospitalized, psychotic patients with Diagnostic and Statistical Manual of Mental Disorder-IV schizophrenia (n=121) were included in the study if they received treatment with typical antipsychotic medication (n=72) or typical antipsychotic drugs and risperidone (n=49) for at least 2 weeks. Clinical state and adverse effects were rated at baseline and after 2 weeks. Twenty-four single nucleotide polymorphisms were genotyped in five regulators of G protein signaling genes.
Results: None of the single nucleotide polymorphisms were related to clinical response to antipsychotic treatment at 2 weeks. Five out of six single nucleotide polymorphisms within or flanking the RGS2 gene were nominally associated with development or worsening of parkinsonian symptoms (PARK+) as measured by the Simpson Angus Scale, one of them after correction for multiple testing (rs4606, P=0.002). A GCCTG haplotype encompassing tagging single nucleotide polymorphisms within and flanking RGS2 was significantly overrepresented among PARK+ compared with PARK--patients (0.23 vs. 0.08, P=0.003). A second, 'protective', GTGCA haplotype was significantly overrepresented in PARK--patients (0.13 vs. 0.30, P=0.009). Both haplotype associations survive correction for multiple testing.
Conclusions: Subject to replication, these findings suggest that genetic variation in the RGS2 gene is associated with susceptibility to extrapyramidal symptoms induced by antipsychotic drugs.