In an effort to identify hepatoselective inhibitors of HMG-CoA reductase, two series of pyrroles were synthesized and evaluated. Efforts were made to modify (3R,5R)-7-[3-(4-fluorophenyl)-1-isopropyl-4-phenyl-5-phenylcarbamoyl-1H-pyrrol-2-yl]-3,5-dihydroxy-heptanoic acid sodium salt 30 in order to reduce its lipophilicity and therefore increase hepatoselectivity. Two strategies that were explored were replacement of the lipophilic 3-phenyl substituent with either a polar function (pyridyl series) or with lower alkyl substituents (lower alkyl series) and attachment of additional polar moieties at the 2-position of the pyrrole ring. One compound was identified to be both highly hepatoselective and active in vivo. We report the discovery, synthesis, and optimization of substituted pyrrole-based hepatoselective ligands as potent inhibitors of HMG-CoA reductase for reducing low density lipoprotein cholesterol (LDL-c) in the treatment of hypercholesterolemia.