Emery-Dreifuss muscular dystrophy (EDMD) is an inherited disorder characterized by slowly progressive skeletal muscle weakness in a humero-peroneal distribution, early contractures and prominent cardiomyopathy with conduction block. Mutations in EMD, encoding emerin, and LMNA, encoding A-type lamins, respectively, cause X-linked and autosomal dominant EDMD. Emerin and A-type lamins are proteins of the inner membrane of the nuclear envelope. Whereas the genetic cause of EDMD has been described and the proteins well characterized, little is known on how abnormalities in nuclear envelope proteins cause striated muscle disease. In this study, we analyzed genome-wide expression profiles in hearts from Emd knockout mice, a model of X-linked EDMD, using Affymetrix GeneChips. This analysis showed a molecular signature similar to that we previously described in hearts from Lmna H222P knock-in mice, a model of autosomal dominant EDMD. There was a common activation of the ERK1/2 branch of the mitogen-activated protein kinase (MAPK) pathway in both murine models, as well as activation of downstream targets implicated in the pathogenesis of cardiomyopathy. Activation of MAPK signaling appears to be a cornerstone in the development of heart disease in both X-linked and autosomal dominant EDMD.