Platelet factor-4 variant chemokine CXCL4L1 inhibits melanoma and lung carcinoma growth and metastasis by preventing angiogenesis

Cancer Res. 2007 Jun 15;67(12):5940-8. doi: 10.1158/0008-5472.CAN-06-4682.

Abstract

The platelet factor-4 variant, designated PF-4var/CXCL4L1, is a recently described natural non-allelic gene variant of the CXC chemokine platelet factor-4/CXCL4. PF-4var/CXCL4L1 was cloned, and the purified recombinant protein strongly inhibited angiogenesis. Recombinant PF-4var/CXCL4L1 was angiostatically more active (at nanomolar concentration) than PF-4/CXCL4 in various test systems, including wound-healing and migration assays for microvascular endothelial cells and the rat cornea micropocket assay for angiogenesis. Furthermore, PF-4var/CXCL4L1 more efficiently inhibited tumor growth in animal models of melanoma and lung carcinoma than PF-4/CXCL4 at an equimolar concentration. For B16 melanoma in nude mice, a significant reduction in tumor size and the number of small i.t. blood vessels was obtained with i.t. applied PF-4var/CXCL4L1. For A549 adenocarcinoma in severe combined immunodeficient mice, i.t. PF-4var/CXCL4L1 reduced tumor growth and microvasculature more efficiently than PF-4/CXCL4 and prevented metastasis to various organs better than the angiostatic IFN-inducible protein 10/CXCL10. Finally, in the syngeneic model of Lewis lung carcinoma, PF-4var/CXCL4L1 inhibited tumor growth equally well as monokine induced by IFN-gamma (Mig)/CXCL9, also known to attract effector T lymphocytes. Taken together, PF-4var/CXCL4L1 is a highly potent antitumoral chemokine preventing development and metastasis of various tumors by inhibition of angiogenesis. These data confirm the clinical potential of locally released chemokines in cancer therapy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Cell Movement
  • Cell Proliferation
  • Humans
  • Lung Neoplasms / metabolism
  • Melanoma / metabolism
  • Mice
  • Neoplasm Metastasis / physiopathology*
  • Neoplasms, Experimental / blood supply
  • Neoplasms, Experimental / metabolism*
  • Neovascularization, Pathologic / metabolism*
  • Platelet Factor 4 / metabolism*
  • Polymerase Chain Reaction
  • Rats

Substances

  • PF4V1 protein, human
  • Platelet Factor 4