Expression of the anti-apoptotic protein Bcl-2 has been shown to increase in the hippocampus and cortex following chronic administration of mood stabilizers such as lithium and valproate, but the effects of long-term antidepressant administration have not been demonstrated. CD1 mice were dosed either acutely or chronically with either antidepressants or 5-HT receptor subtype selective antagonists. Cortex, hippocampus and hypothalamus from these mice were analysed by Western blot for changes in expression of Bcl-2 and Bax protein. Fourteen day but not acute treatment with citalopram (20 mg/kg), imipramine (10 mg/kg) and amitriptyline (10 mg/kg) in mice significantly elevated hippocampal Bcl-2 protein expression as compared to vehicle treated animals (59, 48 and 42% respectively). Similarly, fourteen day but not acute treatment with the 5-HT(1A) and 5-HT(2C/2B) receptor antagonists WAY100635 (0.3 mg/kg) and SB221284 (1 mg/kg) also markedly and significantly increased hippocampal Bcl-2 expression (95 and 52% respectively). Bcl-2 expression was unaffected in cortex by any treatment. There was a smaller increase of hippocampal Bax protein levels following treatment with imipramine after 1 or 14 days, and following citalopram and amitriptyline after 14 but not 1 day. These data present the first substantive evidence that clinically used antidepressants increase the expression of hippocampal Bcl-2 as did chronic blockade of 5-HT(1A) and 5-HT(2C/2B) receptors, which may be involved in the mechanism of action of antidepressants. The induction of hippocampal Bcl-2 expression by long-term antidepressant treatment may contribute to the clinical efficacy of such compounds via its well described neurotrophic and/or anti-apoptotic effects on neuronal function.