Endothelial dysfunction due to the reduced bioavailability of nitric oxide (NO) is involved in the course of atherosclerotic cardiovascular disease as well as chronic kidney disease (CKD). NO is synthesized from L-arginine via the action of NO synthase, which is blocked by endogenous L-arginine analogues such as asymmetric dimethylarginine (ADMA). ADMA is a naturally occurring amino acid found in plasma and various types of tissues. The plasma level of ADMA is reported to be associated with cardiovascular risk factors such as hypertension, diabetes, hyperlipidemia, and CKD, and is a strong predictor for cardiovascular disease and the progression of CKD. In this review, we discuss the biology of ADMA, the molecular mechanisms of the elevation of ADMA levels in CKD, and the pathological role of ADMA in patients with CKD.