Several neuroendocrine complications including diabetes change the morphine antinociception and the development of tolerance to the drug. Morphine antinociception was reduced significantly in morphine tolerant diabetic rats compared to the non-diabetic animals. The exact mechanism of this effect is not known. This study was performed to determine the role of nitric oxide (NO) on morphine tolerance in diabetic state. Nociceptive responses in alloxan-induced diabetic morphine tolerated rats were measured by the hot-plate test. The urinary nitric oxide level was measured spectrophotometrically with Griess reagent. For the conversion of nitrate to nitrite, vanadium chloride was used. The results showed that experimental diabetes increased morphine analgesia. Conversely, degree of tolerance to morphine was diminished in diabetic state. The urinary nitrite content in diabetic morphine tolerated rats was higher than non-diabetic groups. L-arginine significantly increased the NO production in diabetic morphine tolerated animals, whereas aminoguanidine decreased it. Appropriately, L-arginine increased the latency time of reaction to noxious stimuli in diabetic compared to non-diabetic rats. L-arginine-treated animals also showed more tolerance to morphine analgesia. As expected, aminoguanidine deducted the level of morphine tolerance in diabetic animals. It is suggested that NO has a modulatory role in the effects of diabetes on morphine analgesia and tolerance.