Transmission electron tomography has been used in biological sciences for quite some time and proven to be a valuable tool. However, to date, the different Scanning Transmission modes are almost not used for electron tomography on resin-embedded biological material. We explored different STEM modes on epon-embedded, osmium-uranyl-lead-stained biological material. Bright Field-TEM and High Angle Annular Dark Field-STEM tomograms from the same areas were recorded and compared. Contrast and signal-to-noise ratios were calculated. Template matching was used to validate results obtained in Bright Field-TEM and High Angle Annular Dark Field-STEM tomograms. It is concluded that High Angle Annular Dark Field-STEM gives a five times better contrast and signal-to-noise ratio than Bright Field-TEM. Template matching showed that 1.3 times more information could be extracted from High Angle Annular Dark Field-STEM tomograms than from Bright Field-TEM tomograms.