E-cadherin expression is unusually regulated in epithelial ovarian carcinoma. It is not expressed in poorly cohesive ovarian surface epithelial (OSE) target cells, but is expressed in cohesive pre-malignant lesions and in highly cohesive, well-differentiated tumors where it is membrane associated, presumably in adherens junctions. E-cadherin expression is subsequently suppressed, or its function is disrupted, in late-stage invasive tumors. Here, we observed that increased E-cadherin expression in ovarian carcinoma cells was associated with increased E-cadherin promoter activity, increased adherens junction formation, decreased beta-catenin signaling-dependent LEF-1 activity, and the generation of cohesive spheroids in basement membrane gel culture. Forced expression of wild-type E-cadherin in immortalized OSE cells initiated adherens junction formation, decreased LEF-1 activity, decreased the mesenchymal migration that is a characteristic of OSE cells that have been maintained in monolayer culture, and induced the formation of cohesive spheroids in basement membrane gels. Conversely, forced expression of a dominant-negative E-cadherin mutant in ovarian carcinoma cells disrupted adherens junctions, increased mesenchymal cell migration, and prevented spheroidal morphogenesis without altering LEF-1 signaling. Therefore, in addition to suppressing late-stage tumor progression, E-cadherin-mediated adherens junctions may also contribute to the initial emergence of a cohesive morphogenic phenotype that is a hallmark of differentiated epithelial ovarian carcinoma.