We present a novel technique to noninvasively control the growth and turning behavior of an extending neurite. A highly focused infrared laser, positioned at the leading edge of a neurite, has been found to induce extension/turning toward the beam's center. This technique has been used successfully to guide NG108-15 and PC12 cell lines [Ehrlicher, A., Betz, T., Stuhrmann, B., Koch, D. Milner, V. Raizen, M. G., and Kas, J. (2002). Guiding neuronal growth with light. Proc. Natl. Acad. Sci. USA 99, 16024-16028], as well as primary rat and mouse cortical neurons [Stuhrmann, B., Goegler, M., Betz, T., Ehrlicher, A., Koch, D., and Kas, J. (2005). Automated tracking and laser micromanipulation of cells. Rev. Sci. Instr. 76, 035105]. Optical guidance may eventually be used alone or with other methods for controlling neurite extension in both research and clinical applications.