Interleukin-1 alpha (IL-1alpha) regulates a wide range of important cellular processes. In this study for the first time, we report the cloning, expression, biophysical, and biological characterization of the human interleukin-1alpha. Human IL-1alpha has been expressed in Escherichia coli in high yields ( approximately 4mg per liter of the bacterial culture). The protein was purified to homogeneity ( approximately 98% purity) using affinity chromatography and size exclusion chromatography. Results of the steady-state fluorescence and 2D NMR experiments show that the recombinant IL-1alpha is in a folded conformation. Far-UV circular dichroism (CD) data suggest that IL-1alpha is an all beta-sheet protein with a beta-barrel architecture. Isothermal titration calorimetry (ITC) experiments show that the recombinant IL-1alpha binds strongly (K(d) approximately 5.6 x 10(-7) M) to S100A13, a calcium binding protein that chaperones the in vivo release of IL-1alpha into the extracellular compartment. Recombinant IL-1alpha was observed to exhibit strong cytostatic effect on human umbilical vascular endothelial cells. The findings of the present study not only pave way for an in-depth structural investigation of the molecular mechanism(s) underlying the non-classical release of IL-1alpha but also provide avenues for the rational design of potent inhibitors against IL-1alpha mediated pathogenesis.