Background: Meningococcal meningitis (MM) represents an important public health problem especially in the "meningitis belt" in Africa. Although seasonality of epidemics is well known with outbreaks usually starting in the dry season, pluri-annual cycles are still less understood and even studied. In this context, we aimed at study MM cases time series across 9 sahelo-sudanian countries to detect pluri-annual periodicity and determine or not synchrony between dynamics. This global and comparative approach allows a better understanding of MM evolution in time and space in the long-term.
Results: We used the most adapted mathematical tool to time series analyses, the wavelet method. We showed that, despite a strong consensus on the existence of a global pluri-annual cycle of MM epidemics, it is not the case. Indeed, even if a clear cycle is detected in all countries, these cycles are not as permanent and regular as generally admitted since many years. Moreover, no global synchrony was detected although many countries seemed correlated.
Conclusion: These results of the first large-scale study of MM dynamics highlight the strong interest and the necessity of a global survey of MM in order to be able to predict and prevent large epidemics by adapted vaccination strategy. International cooperation in Public Health and cross-disciplines studies are highly recommended to hope controlling this infectious disease.