The development of small animal models is of major interest to unravel the pathogenesis and treatment of neurodegenerative diseases, especially because of their potential in large-scale chemical and genetic screening. We have investigated the zebrafish as a model to study amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder characterized by the selective loss of motor neurons, caused by mutations in superoxide dismutase 1 (SOD1) in a subset of patients. Overexpression of mutant human SOD1 in zebrafish embryos induced a motor axonopathy that was specific, dose-dependent and found for all mutations studied. Moreover, using this newly established animal model for ALS, we investigated the role of a known modifier in the disease: vascular endothelial growth factor (VEGF). Lowering VEGF induced a more severe phenotype, whereas upregulating VEGF rescued the mutant SOD1 axonopathy. This novel zebrafish model underscores the potential of VEGF for the treatment of ALS and furthermore will permit large-scale genetic and chemical screening to facilitate the identification of new therapeutic targets in motor neuron disease.