Pharmacokinetics and pharmacodynamics of seven opioids in P-glycoprotein-competent mice: assessment of unbound brain EC50,u and correlation of in vitro, preclinical, and clinical data

J Pharmacol Exp Ther. 2007 Oct;323(1):346-55. doi: 10.1124/jpet.107.119560. Epub 2007 Jul 23.

Abstract

This study was conducted to assess the utility of unbound brain EC50 (EC50,u) as a measure of in vivo potency for centrally active drugs. Seven mu-opioid agonists (alfentanil, fentanyl, loperamide, methadone, meperidine, morphine, and sufentanil) were selected as model central nervous system drugs because they elicit a readily measurable central effect (antinociception) and their clinical pharmacokinetics/pharmacodynamics are well understood. Mice received an equipotent subcutaneous dose of one of the model opioids. The time course of antinociception and the serum and brain concentrations were determined. A pharmacokinetic/pharmacodynamic model was used to estimate relevant parameters. In vitro measures of opioid binding affinity (Ki) and functional activity [EC50 for agonist stimulated guanosine 5'-O-(3-[35S]thio)triphosphate binding] and relevant clinical parameters were obtained to construct in vitro-to-preclinical and preclinical-to-clinical correlations. The strongest in vitro-to-in vivo correlation was observed between Ki and unbound brain EC50,u (r2 approximately 0.8). A strong correlation between mouse serum and human plasma EC50 was observed (r2 = 0.949); the correlation was improved when corrected for protein binding (r2 = 0.995). Clinical equipotent i.v. dose was only moderately related to Ki. However, estimates of ED50 and EC50 (total serum, unbound serum, total brain, and unbound brain) were significant predictors of clinical equipotent i.v. dose; the best correlation was observed for brain EC50,u (r2 = 0.982). For each opioid, brain equilibration half-life in mice was almost identical to the plasma effect-site equilibration half-life measured clinically. These results indicate that the mouse is a good model for opioid human brain disposition and clinical pharmacology and that superior in vitro-to-preclinical and preclinical-to-clinical correlations can be achieved with relevant unbound concentrations.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B / biosynthesis*
  • ATP-Binding Cassette Transporters / biosynthesis*
  • Analgesics, Opioid* / pharmacokinetics
  • Analgesics, Opioid* / pharmacology
  • Analgesics, Opioid* / therapeutic use
  • Animals
  • Blood-Brain Barrier / metabolism
  • Brain / drug effects*
  • Brain / metabolism
  • Drug Evaluation, Preclinical / methods
  • Guanosine 5'-O-(3-Thiotriphosphate) / metabolism
  • Humans
  • Male
  • Mice
  • Models, Biological*
  • Pain / drug therapy
  • Predictive Value of Tests
  • Protein Binding
  • Radioligand Assay
  • Receptors, Opioid, mu / agonists*

Substances

  • ATP Binding Cassette Transporter, Subfamily B
  • ATP-Binding Cassette Transporters
  • Analgesics, Opioid
  • Receptors, Opioid, mu
  • Guanosine 5'-O-(3-Thiotriphosphate)
  • multidrug resistance protein 3