In situ detection of Bacillus anthracis spores using fully submersible, self-exciting, self-sensing PMN-PT/Sn piezoelectric microcantilevers

Analyst. 2007 Aug;132(8):777-83. doi: 10.1039/b704579d. Epub 2007 Jun 18.

Abstract

In this study, we have demonstrated in situ, all-electrical detection of Bacillus anthracis (BA) spores using lead magnesium niobate-lead titanate/tin (PMN-PT/Sn) piezoelectric microcantilever sensors (PEMS) fabricated from PMN-PT freestanding films and electrically insulated with methyltrimethoxysilane (MTMS) coatings on the tin surface. Antibody specific to BA spore surface antigen was immobilized on the platinum electrode of the PMN-PT layer. In phosphate-buffered saline (PBS) solution, the PMN-PT/Sn PEMS exhibited quality (Q) values ranging from 50 to 75. The detection was carried out in a closed-loop flow cell with a liquid volume of 0.8 ml and a flow rate of 1 ml min(-1). It was shown that one sensor, "PEMS-A" (500 microm long, 800 microm wide, with a 22 microm thick PMN-PT layer, a 20 microm thick tin layer and a 1 +/- 0.5 x 10(-12) g Hz(-1) mass detection sensitivity) exhibited resonance frequency shifts of 2100 +/- 200, 1100 +/- 100 and 700 +/- 100 Hz at concentrations of 20,000, 2000, and 200 spores ml(-1) or 16,000, 1600, and 160 total spores, respectively. Additionally, "PEMS-B" (350 microm long, 800 microm wide, with an 8 microm thick PMN-PT layer, a 6 microm thick tin layer and a 2 +/- 1 x 10(-13) g Hz(-1) mass detection sensitivity) exhibited resonance frequency shifts of 2400 +/- 200, 1500 +/- 200, 500 +/- 150 and 200 +/- 100 Hz at concentrations of 20,000, 2000, 100, and 45 spores ml(-1) or 16,000, 1600, 80, and 36 total spores, respectively.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Anthrax / prevention & control*
  • Bacillus anthracis*
  • Biosensing Techniques
  • Electrochemistry / instrumentation
  • Electrochemistry / methods
  • Environmental Monitoring / instrumentation
  • Environmental Monitoring / methods
  • Humans
  • Microchemistry / instrumentation
  • Microchemistry / methods
  • Microscopy, Electron, Scanning
  • Spores, Bacterial* / ultrastructure