It has not been firmly established whether disturbed calcium-phosphate metabolism affects progression of chronic kidney disease (CKD) in humans. In this cohort study of 227 nondiabetic patients with CKD, we assessed fibroblast growth factor 23 (FGF23) plasma concentrations in addition to other variables involved in calcium-phosphate metabolism, and we followed 177 of the patients prospectively for a median of 53 months to assess progression of renal disease. In the baseline cohort, we found a significant inverse correlation between glomerular filtration rate and both c-terminal and intact FGF23 levels (both P < 0.001). The 65 patients who experienced a doubling of serum creatinine and/or terminal renal failure were significantly older, had a significantly lower glomerular filtration rate at baseline, and significantly higher levels of intact parathormone, c-terminal and intact FGF23, and serum phosphate (all P < 0.001). Cox regression analysis revealed that both c-terminal and intact FGF23 independently predict progression of CKD after adjustment for age, gender, GFR, proteinuria, and serum levels of calcium, phosphate, and parathyroid hormone. The mean follow-up time to a progression end point was 46.9 (95% CI 40.2 to 53.6) months versus 72.5 (95% CI 67.7 to 77.3) months for patients with c-terminal FGF23 levels above or below the optimal cut-off level of 104 rU/mL (derived by receiver operator curve analysis), respectively. In conclusion, FGF23 is a novel independent predictor of progression of renal disease in patients with nondiabetic CKD. Its pathophysiological significance remains to be elucidated.