A novel integrated MEG and EEG analysis method for dipolar sources

Neuroimage. 2007 Sep 1;37(3):731-48. doi: 10.1016/j.neuroimage.2007.06.002. Epub 2007 Jun 14.

Abstract

The ability of magnetoencephalography (MEG) to accurately localize neuronal currents and obtain tangential components of the source is largely due to MEG's insensitivity to the conductivity profile of the head tissues. However, MEG cannot reliably detect the radial component of the neuronal current. In contrast, the localization accuracy of electroencephalography (EEG) is not as good as MEG, but EEG can detect both the tangential and radial components of the source. In the present study, we investigated the conductivity dependence in a new approach that combines MEG and EEG to accurately obtain, not only the location and tangential components, but also the radial component of the source. In this approach, the source location and tangential components are obtained from MEG alone, and optimal conductivity values of the EEG model are estimated by best-fitting EEG signal, while precisely matching the tangential components of the source in EEG and MEG. Then, the radial components are obtained from EEG using the previously estimated optimal conductivity values. Computer simulations testing this integrated approach demonstrated two main findings. First, there are well-organized optimal combinations of the conductivity values that provide an accurate fit to the combined MEG and EEG data. Second, the radial component, in addition to the location and tangential components, can be obtained with high accuracy without needing to know the precise conductivity profile of the head. We then demonstrated that this new approach performed reliably in an analysis of the 20-ms component from human somatosensory responses elicited by electric median-nerve stimulation.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Brain / physiology*
  • Brain Mapping / methods*
  • Computer Simulation
  • Diagnosis, Computer-Assisted / methods
  • Electroencephalography / methods*
  • Evoked Potentials / physiology*
  • Magnetoencephalography / methods*
  • Models, Neurological*
  • Systems Integration