Identification of new disease predisposition genes with chip-based technologies typically requires extensive financial and sample resources. We have recently shown that combining peripheral blood genome and transcriptome (BGT) information in highly selected materials can be a successful low-cost approach to unravelling dominant tumour susceptibility. In this study, we extended our investigations to recessively inherited tumour predisposition, and identified a homozygous germline mutation in the damage-specific DNA binding protein 2 (DDB2) gene in a patient with several facial tumours, for which doctors had been unable to provide a diagnosis. Our results provide proof of principle that BGT is a powerful approach for both dominant and recessive genes. In addition to tumour susceptibility, the method may be useful in characterising genetic defects underlying other disease phenotypes.