Dynamic thoracic EIT is capable of detecting changes of the ventilation distribution in the lung. Nevertheless, it has yet to become an established clinical tool. Therefore, it is necessary to consider application scenarios wherein fast and distinct changes of the tissue conductivities are to be found and also have a clear diagnostic significance. One such a scenario is the artificial ventilation of patients suffering from the acute respiratory distress syndrome (ARDS). New protective ventilation strategies involving recruitment manoeuvres are associated with noticeable shifts of body fluids and regional ventilation, which can quite easily be detected by EIT. The bedside assessment of these recruitment manoeuvres will help the attending physician to optimize treatment. Hence, we performed an animal study of lavage-induced lung failure and investigated if EIT is capable of qualitatively as well as quantitatively monitoring lung recruitment during a stepwise PEEP trial. Additionally, we integrated EIT into a fuzzy controller-based ventilation system which allows one to perform automated recruitment manoeuvres (open lung concept) based on online PaO2 measurements. We found that EIT is a useful tool to titrate the proper PEEP level after fully recruiting the lung. Furthermore, EIT seems to be able to determine the status of recruitment when combining it with other physiological parameters. These results suggest that EIT may play an important role in the individualization of protective ventilation strategies.