ZYG-9, TAC-1 and ZYG-8 together ensure correct microtubule function throughout the cell cycle of C. elegans embryos

J Cell Sci. 2007 Aug 15;120(Pt 16):2963-73. doi: 10.1242/jcs.004812. Epub 2007 Jul 31.

Abstract

The early Caenorhabditis elegans embryo is well suited for investigating microtubule-dependent cell division processes. In the one-cell stage, the XMAP215 homologue ZYG-9, associated with the TACC protein TAC-1, promotes microtubule growth during interphase and mitosis, whereas the doublecortin domain protein ZYG-8 is required for anaphase spindle positioning. How ZYG-9, TAC-1 and ZYG-8 together ensure correct microtubule-dependent processes throughout the cell cycle is not fully understood. Here, we identify new temperature-sensitive alleles of zyg-9 and tac-1. Analysis of ZYG-9 and TAC-1 distribution in these mutants identifies amino acids important for centrosomal targeting and for stability of the two proteins. This analysis also reveals that TAC-1 is needed for correct ZYG-9 centrosomal enrichment. Moreover, we find that ZYG-9, but not TAC-1, is limiting for microtubule-dependent processes in one-cell-stage embryos. Using two of these alleles to rapidly inactivate ZYG-9-TAC-1 function, we establish that this complex is required for correct anaphase spindle positioning. Furthermore, we uncover that ZYG-9-TAC-1 and ZYG-8 function together during meiosis, interphase and mitosis. We also find that TAC-1 physically interacts with ZYG-8 through its doublecortin domain, and that in vivo TAC-1 and ZYG-8 are part of a complex that does not contain ZYG-9. Taken together, these findings indicate that ZYG-9-TAC-1 and ZYG-8 act in a partially redundant manner to ensure correct microtubule assembly throughout the cell cycle of early C. elegans embryos.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alleles
  • Anaphase
  • Animals
  • Caenorhabditis elegans / cytology*
  • Caenorhabditis elegans / embryology
  • Caenorhabditis elegans / metabolism
  • Caenorhabditis elegans Proteins / chemistry
  • Caenorhabditis elegans Proteins / metabolism*
  • Cell Cycle Proteins / metabolism*
  • Cell Cycle*
  • Embryo Loss
  • Embryo, Nonmammalian / cytology*
  • Embryo, Nonmammalian / metabolism
  • Microtubules / metabolism*
  • Mutation / genetics
  • Phenotype
  • Protein Binding
  • Protein Structure, Tertiary
  • Spindle Apparatus / metabolism

Substances

  • Caenorhabditis elegans Proteins
  • Cell Cycle Proteins
  • TAC-1 protein, C elegans
  • ZYG-9 protein, C elegans
  • zyg-8 protein, C elegans