Floral color change has been recognized as a pollination strategy, but its relative effectiveness has been evaluated insufficiently with respect to other floral traits. In this study, effects of floral color change on the visitation pattern of bumblebees were empirically assessed using artificial flowers. Four inflorescence types were postulated as strategies of flowering behavior: type 1 has no retention of old flowers, resulting in a small display size; type 2 retains old flowers without nectar production; type 3 retains old flowers with nectar; and type 4 retains color-changed old flowers without nectar. Effects of these treatments varied depending on both the total display size (single versus multiple inflorescences) and the pattern of flower-opening. In the single inflorescence experiment, a large floral display due to the retention of old flowers (types 2-4) enhanced pollinator attraction, and the number of flower visits per stay decreased with color change (type 4), suggesting a decrease in geitonogamous pollination. Type-4 plants also reduced the foraging time of bees in comparison with type-2 plants. In the multiple inflorescence experiment, the retention of old flowers did not contribute to pollinator attraction. When flowering occurred sequentially within inflorescences, type-4 plants successfully decreased the number of visits and the foraging time in comparison with type-2 plants. In contrast, floral color change did not influence the number of visits, and it extended the foraging time when flowering occurred simultaneously within inflorescences but the opening of inflorescences progressed sequentially within a plant. Therefore, the effectiveness of floral color change is highly susceptible to the display size and flowering pattern within plants, and this may limit the versatility of the color change strategy in nature.