A Saccharomyces cerevisiae strain, capable of autonomous bioluminescence, was engineered to respond to androgenic chemicals. The strain, S. cerevisiae BLYAS, contains the human androgen receptor in the chromosome and was constructed by inserting a series of androgen response elements between divergent yeast promoters GPD and ADH1 on pUTK401 that constitutively expressed luxA and luxB to create pUTK420. Cotransformation of this plasmid with a second plasmid (pUTK404), containing the genes required for aldehyde synthesis (luxCDE) and FMN reduction (frp), yielded a bioluminescent bioreporter responsive to androgenic chemicals. Using dihydrotestosterone (DHT) as a standard, the response time and the 50% effective concentration values were 3 to 4 h and (9.7 +/- 4.6) x 10(-9) M, respectively. The lower limit of detection in response to DHT was 2.5 x 10(-9) M, and in response to testosterone it was 2.5 x 10(-10) M. This strain is suitable for high-throughput screening of chemicals with potential for remote environmental monitoring systems because of the assay speed, sensitivity, and self-containment.