The V3 loop (residues 303-338) of the human immunodeficiency virus type 1 (HIV-1) gp120 envelope protein represents a principal neutralizing determinant for the virus. An HIV-1 proviral clone containing a mutation in the V3 loop was constructed in which the proline residue at position 313 was changed to an alanine (P313-A). This mutation alters the conserved GPGR sequence that is found in the V3 loop sequences of different HIV-1 isolates. The P313-A clone produced virus particles, which were infectious for a number of T-cell lines including MOLT-4, CEM, and SupT1, but demonstrated a relatively low infectivity on the AA5 B-cell line when compared with wild-type viruses, HTLV-IIIB, HXB2/10 (a chimeric molecular clone), and another mutant virus (Q290-T). V3 loop-specific neutralizing polyclonal sera and the 9284 monoclonal antibody, which recognizes the amino side of the V3 loop sequence, effectively blocked infectivity and syncytia formation of all viruses tested. In contrast, the 0.5 beta monoclonal antibody, which is biologically more potent than 9284 and recognizes a different V3 loop determinant, failed to neutralize the P313-A virus. These results suggest that the proline residue in the relatively conserved GPGR "turn" region of the V3 loop is crucial for recognition by the 0.5 beta antibody. The observed variation in sensitivity of the B-cell line to the P313-A virus may reflect the presence of cell-specific factors which could be important in establishing an HIV-1 infection.