Rationale: Cannabis is the most widely consumed drug associated with 3,4-methylenedioxymethamphetamine (MDMA) use.
Objectives: This study examines whether low doses of MDMA and delta-9-tetrahydrocannabinol (THC) produce synergistic rewarding/reinforcing effects in mice using the conditioned place preference (CPP) and operant self-administration paradigms. Changes in dopamine (DA) outflow were monitored in the nucleus accumbens (NAC) after single or combined administration of these compounds.
Results: MDMA induced a significant CPP at the dose of 10 mg/kg but not at the dose of 3 mg/kg. THC (0.3 mg/kg) by itself was also ineffective in this paradigm. The combined administration of the low dose of MDMA (3 mg/kg) and THC (0.3 mg/kg) produced CPP, whereas the combination of MDMA (10 mg/kg) and THC (0.3 mg/kg) significantly decreased CPP. Animals treated with THC self-administered a sub-threshold dose of MDMA (0.06 mg/kg per infusion), while animals receiving vehicle did not. However, THC did not modify the self-administration of an effective dose of MDMA (0.125 mg/kg per infusion). In microdialysis studies, a low dose of THC significantly increased DA outflow in the NAC, while a low dose of MDMA did not. When MDMA was administered before THC, DA levels decreased with respect to THC. However, when THC was administered before MDMA, DA levels were not significantly modified with respect to THC.
Conclusions: These results demonstrate that a low dose of THC modifies in different ways (increases and decreases) the sensitivity of animals to the behavioural effects of MDMA and that THC and MDMA converge at a common mechanism modulating DA outflow in the NAC of mice.